Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(2): 1371-1383, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726354

RESUMO

We propose and experimentally demonstrate a modular microring laser (MML) cavity for sensing applications. The proposed MML permits much more design freedom compared with a traditional simple ring cavity by decoupling the performance parameters into several regions in the cavity. Thus, the different biosensor performance parameters can be optimized semi-independently limiting the need for trade-offs on the design of the biosensing device. The first generation MML has been fabricated and tested. A fiber-to-fiber slope efficiency of up to 1.2%, a temperature coefficient of 1.35 GHz/K and a 3σ limit of detection (LOD) of 3.1 × 10-7 RIU without averaging and 6.0 × 10-8 RIU with a 60 s averaging, has been measured for the MML sensor, which is a record-low LOD in on-chip ring cavity optical sensors. Further optimization is possible, capitalizing on the key advantage of the MML concept, namely the potential for designing the laser cavity to achieve the desired optimization goals.

2.
Micromachines (Basel) ; 10(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590309

RESUMO

Rare-earth ion-doped potassium yttrium double tungstate, RE:KY(WO4)2, is a promising candidate for small, power-efficient, on-chip lasers and amplifiers. Thin KY(WO4)2onglass layers with thicknesses ranging between 0.9 and 1.6 m are required to realize on-chip lasers based on high refractive index contrast waveguides operating between 1.55 and 3.00 µm. The crystalline nature of KY(WO4)2 makes the growth of thin, defect-free layers on amorphous glass substrates impossible. Heterogeneous integration is one of the promising approaches to achieve thin KY(WO4)2onglass layers. In this process, crystal samples, with a thickness of 1 mm, are bonded onto a glass substrate and thinned down with an extensive lapping and polishing procedure to the desired final thickness. In this study, a lapping and polishing process for KY(WO4)2 was developed toward the realization of integrated active optical devices in this material.

3.
Opt Express ; 27(16): 23067-23079, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510589

RESUMO

Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively.

4.
Opt Lett ; 44(24): 5937-5940, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628191

RESUMO

Whispering gallery mode resonator lasers hold the promise of an ultralow intrinsic limit of detection. However, the widespread use of these devices for biosensing applications has been hindered by the complexity and lack of robustness of the proposed configurations. In this work, we demonstrate biosensing with an integrated microdisk laser. Al2O3doped with Yb3+ was utilized because of its low optical losses as well as its emission in the range 1020-1050 nm, outside the absorption band of water. Single-mode laser emission was obtained at a wavelength of 1024 nm with a linewidth of 250 kHz while the microdisk cavity was submerged in water. A limit of detection of 300 pM (3.6 ng/ml) of the protein rhS100A4 in urine was experimentally demonstrated, showing the potential of the proposed devices for biosensing.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Lasers , Itérbio/química
5.
Opt Express ; 26(5): 6260-6266, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529817

RESUMO

We report on the optical-gain properties of channel waveguides patterned into lattice-matched KGdxLuyEr1-x-y(WO4)2 layers grown onto undoped KY(WO4)2 substrates by liquid phase epitaxy. A systematic investigation of gain is performed for five different Er3+ concentrations in the range of 0.75 to 10at.% and different pump powers and signal wavelengths. In pump-probe-beam experiments, relative internal gain, i.e., signal enhancement minus absorption loss of light propagating in the channel waveguide, is experimentally demonstrated, with a maximum value of 12 ± 5 dB/cm for signals at the peak-emission wavelength of 1534.7 nm.

6.
Opt Lett ; 42(19): 3812-3815, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957135

RESUMO

A low-loss, broadband and high fabrication tolerant optical coupler for the monolithic integration of Si3N4 and polymer waveguides is designed and experimentally demonstrated. The coupler is based on the adiabatic vertical tapering of the Si3N4 waveguides. Low-loss operation is experimentally verified at both 976 and 1460-1635 nm wavelengths. Measured losses per coupler are as low as 0.12 and 0.14 dB at 976 and 1550 nm, respectively, and below 0.2 dB at both wavelengths for lateral misalignments between the Si3N4 and polymer waveguides up to 1.0 µm.

7.
Opt Express ; 24(23): 26825-26837, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857411

RESUMO

We study the spectroscopic properties of thin films of potassium ytterbium gadolinium double tungstates, KYb0.57Gd0.43(WO4)2, and potassium ytterbium lutetium double tungstates, KYb0.76Lu0.24(WO4)2, specifically at the central absorption line near 981 nm wavelength, which is important for amplifiers and lasers. The absorption cross-section of both thin films is found to be similar to those of bulk potassium rare-earth double tungstates, suggesting that the crystalline layers retain their spectroscopic properties albeit having >50 at.% Yb3+ concentration. The influence of sample temperature is investigated and found to substantially affect the measured absorption cross-section. Since amplifiers and lasers typically operate above room temperature due to pump-induced heating, the temperature dependence of the peak-absorption cross-section of the KYb0.57Gd0.43(WO4)2 is evaluated for the sample being heated from 20 °C to 170 °C, resulting in a measured reduction of peak-absorption cross-section at the transitions near 933 nm and 981 nm by ~40% and ~52%, respectively. It is shown that two effects, the change of Stark-level population and linewidth broadening due to intra-manifold relaxation induced by temperature-dependent electron-phonon interaction, contribute to the observed behavior. The effective emission cross-sections versus temperature have been calculated. Luminescence-decay measurements show no significant dependence of the luminescence lifetime on temperature.

8.
Opt Express ; 22(21): 25993-6004, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401633

RESUMO

Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.


Assuntos
Amplificadores Eletrônicos , Érbio , Lasers de Estado Sólido , Óxidos , Silício , Desenho Assistido por Computador , Desenho de Equipamento
9.
Opt Express ; 21(24): 29808-17, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514530

RESUMO

Embodying a thin metallic layer underneath the core of a sharply bent polymer waveguide is shown in this work to considerably reduce the total losses of both the quasi-transverse-electric and quasi-transverse-magnetic modes. The computational results show a total loss as low as ~0.02 dB/90° for the quasi-transverse-electric mode for radii between 6 and 13 µm at the wavelength of 1.55 µm, which corresponds to a 10-fold improvement over the purely dielectric counterpart. The radii range exhibiting such low total loss can be tuned by properly selecting the parameters of the structure. For the quasi-transverse-magnetic mode, the metal layer reduces the total losses modestly for radii ranging from 3 to 10 µm. Simulation results for different structural parameters are presented.

10.
Adv Mater ; 24(10): OP19-22, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22020929

RESUMO

Modal gain per unit length versus launched pump power is predicted and measured in a 47.5 at.% Yb(3+) -doped potassium double tungstate channel waveguide. The highest measured gain exceeds values previously reported for rare-earth-ion-doped materials by two orders of magnitude.


Assuntos
Microtecnologia/métodos , Fenômenos Ópticos , Itérbio/química , Absorção , Corantes/química , Potássio/química , Semicondutores
11.
Opt Express ; 19(25): 25298-311, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273920

RESUMO

Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides is theoretically analyzed when rare-earth-doped double tungstate crystalline material is used as the gain medium in three different waveguide configurations. We study the effect of waveguide geometry on loss compensation at the telecom wavelength of 1.55 µm, and demonstrate that a material gain as small as 12.5 dB/cm is sufficient for lossless propagation of plasmonic modes with sub-micron lateral confinement when using waveguide ridges with gain.


Assuntos
Modelos Químicos , Ressonância de Plasmônio de Superfície/métodos , Compostos de Tungstênio/química , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...